In vitro biocompatibility evaluation of surface-modified titanium alloys.

نویسندگان

  • Cristina Treves
  • Maria Martinesi
  • Maria Stio
  • Alejandro Gutiérrez
  • José Antonio Jiménez
  • María Francisca López
چکیده

The present work is aimed to evaluate the effects of a surface modification process on the biocompatibility of three vanadium-free titanium alloys with biomedical applications interest. Chemical composition of alloys investigated, in weight %, were Ti-7Nb-6Al, Ti-13Nb-13Zr, and Ti-15Zr-4Nb. An easy and economic method intended to improve the biocompatibiblity of these materials consists in a simple thermal treatment at high temperature, 750 degrees C, in air for different times. The significance of modification of the surface properties to the biological response was studied putting in contact both untreated and thermally treated alloys with human cells in culture, Human Umbilical Vein Endothelial Cells (HUVEC) and Human Peripheral Blood Mononuclear Cells (PBMC). The TNF-alpha release data indicate that thermal treatment improves the biological response of the alloys. The notable enhancement of the surface roughness upon oxidation could be related with the observed reduction of the TNF-alpha levels for treated alloys. A different behavior of the two cell lines may be observed, when adhesion molecules (ICAM-1 and VCAM-1 in HUVEC, ICAM-1, and LFA-1 in PBMC) were determined, PBMC being more sensitive than HUVEC to the contact with the samples. The data also distinguish surface composition and corrosion resistance as significant parameters for the biological response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation techniques of metallic biomaterials in vitro

Metals and alloys are widely used as biomedical materials and are important in medicine and they cannot be replaced with ceramics or polymers at present mainly because of their high strength and toughness. Since safety is the most important property of biomaterials, corrosion-resistant materials such as stainless steel, Co–Cr–Mo alloy, commercially pure titanium, and titanium alloys are employe...

متن کامل

Mechanical Strength and Biocompatibility of Ultrafine-Grained Commercial Purity Titanium

The effect of grain refinement of commercial purity titanium by equal channel angular pressing (ECAP) on its mechanical performance and bone tissue regeneration is reported. In vivo studies conducted on New Zealand white rabbits did not show an enhancement of biocompatibility of ECAP-modified titanium found earlier by in vitro testing. However, the observed combination of outstanding mechanical...

متن کامل

EFFECT OF ANODIC OXIDATION ON THE CORROSION BEHAVIOR OF NICKEL-TITANIUM SHAPE MEMORY ALLOYS IN SIMULATED BODY FLUIDS (SBF)

The effect of anodic oxidation of a NiTi shape memory alloy in sulfuric acid electrolyte on its surface characteristics was studied. Surface roughness was measured by roughness tester. Surface morphology was studied using optical microscopy (OM) and scanning electron microscopy (SEM). Corrosion behavior was specified by recording Potentiodynamic polarization cur...

متن کامل

Ti-Based Biomedical Material Modified with TiOx/TiNx Duplex Bioactivity Film via Micro-Arc Oxidation and Nitrogen Ion Implantation

Titanium (Ti) and Ti-based alloy are widely used in the biomedical field owing to their excellent mechanical compatibility and biocompatibility. However, the bioinert bioactivity and biotribological properties of titanium limit its clinical application in implants. In order to improve the biocompatibility of titanium, we modified its surface with TiOx/TiNx duplex composite films using a new met...

متن کامل

Influence of Alkali Treatment on Anodized Titanium Alloys in Wollastonite Suspension

The surface modification of titanium alloys is an effective method to improve their biocompatibility and tailor the material to the desired profile of implant functionality. In this work, technologically-advanced titanium alloys—Ti-15Mo, Ti-13Nb-13Zr and Ti-6Al-7Nb—were anodized in suspensions, followed by treatment in alkali solutions, with wollastonite deposition from the powder phase suspend...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 92 4  شماره 

صفحات  -

تاریخ انتشار 2010